login
A083529
a(n) = 5^n mod 3*n.
6
2, 1, 8, 1, 5, 1, 5, 1, 26, 25, 5, 1, 5, 25, 35, 1, 5, 1, 5, 25, 62, 25, 5, 1, 50, 25, 80, 37, 5, 55, 5, 1, 26, 25, 80, 1, 5, 25, 8, 25, 5, 1, 5, 97, 80, 25, 5, 1, 68, 25, 125, 1, 5, 1, 155, 25, 125, 25, 5, 145, 5, 25, 188, 1, 5, 181, 5, 13, 125, 205, 5, 1, 5, 25, 125, 169, 80, 181, 5
OFFSET
1,1
COMMENTS
From Robert Israel, Dec 25 2014: (Start)
a(n) == (-1)^n mod 3.
a(n) = 1 if and only if n is even and in A067946.
For n > 3, a(n) = 5 if and only if n is odd and in A123091. (End)
LINKS
EXAMPLE
a(3) = 8 because 5^3 = 125 and 125 mod (3 * 3) = 8.
a(4) = 1 because 5^4 = 625 and 625 mod (3 * 4) = 1.
MAPLE
seq(5 &^n mod 3*n, n = 1 .. 1000); # Robert Israel, Dec 25 2014
MATHEMATICA
Table[Mod[5^w, 3 * w], {w, 100}]
Table[PowerMod[5, n, 3n], {n, 80}] (* Harvey P. Dale, Jul 26 2014 *)
PROG
(PARI) a(n)=lift(Mod(5, 3*n)^n) \\ Charles R Greathouse IV, Oct 03 2016
(Magma) [Modexp(5, n, 3*n): n in [1..80]]; // Vincenzo Librandi, Oct 19 2018
KEYWORD
easy,nonn
AUTHOR
Labos Elemer, Apr 30 2003
STATUS
approved