login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients of power series A(x) consist entirely of squares, where A(x) = A083352(x)^2 + A083352(x) - 1.
3

%I #15 Nov 19 2017 14:20:41

%S 1,9,36,81,144,225,324,576,1089,1296,1764,2916,4356,6084,7569,9801,

%T 16641,20736,25281,32400,39204,53361,69696,76176,90000,110889,149769,

%U 176400,184041,207936,281961,338724,363609,349281,455625,540225,665856,772641,746496,893025,1258884,1375929,1565001,1587600,1782225,2259009,2576025,2722500,2985984,3186225,3837681,4284900,4928400,5143824,5475600,6320196,7290000,8311689,8520561,8803089

%N Coefficients of power series A(x) consist entirely of squares, where A(x) = A083352(x)^2 + A083352(x) - 1.

%C After the first term, all terms seem to be a multiples of 9.

%H Paul D. Hanna, <a href="/A083353/b083353.txt">Table of n, a(n) for n = 0..300</a>

%e G.f.: A(x) = 1 + 9*x + 36*x^2 + 81*x^3 + 144*x^4 + 225*x^5 + 324*x^6 + 576*x^7 + 1089*x^8 + 1296*x^9 + 1764*x^10 + 2916*x^11 + 4356*x^12 + 6084*x^13 + 7569*x^14 + 9801*x^15 + 16641*x^16 + 20736*x^17 + 25281*x^18 + 32400*x^19 + 39204*x^20 + 53361*x^21 + 69696*x^22 + 76176*x^23 + 90000*x^24 + 110889*x^25 + 149769*x^26 + 176400*x^27 + 184041*x^28 + 207936*x^29 + 281961*x^30 + ...

%e where A(x) = B(x)^2 + B(x) - 1 with B(x) the g.f. of A083352, which begins:

%e B(x) = 1 + 3*x + 9*x^2 + 9*x^3 + 3*x^4 + 15*x^5 + 33*x^6 + 18*x^7 + 36*x^8 + 24*x^9 + 75*x^10 + 96*x^11 + 51*x^12 + 96*x^13 + 159*x^14 + 165*x^15 + 255*x^16 + 168*x^17 + 27*x^18 + 60*x^19 + 333*x^20 + 255*x^21 + 66*x^22 + 18*x^23 + 441*x^24 + 291*x^25 + 735*x^26 + 258*x^27 + 390*x^28 + 696*x^29 + 480*x^30 + ...

%o (PARI) {for(i=1, 30, A=[1]; print1(1, ", "); for(i=1, 200, A0=concat(A, 0); for(n=1, 100*A[#A], A0[#A0]=n; B=Vec(Ser(A0)^2 + Ser(A0) - 1); if(issquare(B[#B]), print1(B[#B], ", "); A0[#A0]=n; A=A0; break)))); B}

%Y Cf. A083352, A083354 (square root of terms).

%K nonn

%O 0,2

%A _Paul D. Hanna_, Apr 26 2003

%E Extended by _Paul D. Hanna_, Nov 19 2017