

A083290


Number of partitions of n into distinct parts which are coprime to n and which are also pairwise relatively prime.


4



1, 0, 1, 1, 2, 1, 3, 2, 3, 2, 7, 2, 9, 3, 4, 5, 16, 3, 20, 4, 8, 7, 31, 5, 22, 9, 18, 9, 54, 4, 68, 16, 21, 16, 28, 11, 112, 20, 32, 18, 144, 9, 173, 22, 33, 40, 221, 19, 139, 25, 71, 43, 327, 25, 117, 47, 103, 80, 475, 18, 568, 90, 98, 122, 191, 29, 805, 93, 197, 44
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


COMMENTS



LINKS



EXAMPLE

a(7) = 3 since 7 = 3+4 = 2+5 = 1+6; 7 = 1+2+4 does not count (A036998(7)=4).


MATHEMATICA

a[n_] := a[n] = If[n == 1, 1, Module[{ip}, ip = IntegerPartitions[n, All, Select[Range[n  1], CoprimeQ[#, n] &]]; Length@Select[ip, Sort[#] == Union[#] && AllTrue[Subsets[#, {2}], CoprimeQ @@ # &] &]]];


PROG

(PARI) a(n)={local(Cache=Map()); my(recurse(r, p, k)=my(hk=[r, p, k], z); if(!mapisdefined(Cache, hk, &z), z=if(k==0, r==0, self()(r, p, k1) + if(gcd(p, k)==1, self()(rk, p*k, min(rk, k1)))); mapput(Cache, hk, z)); z); recurse(n, n, n)} \\ Andrew Howroyd, Apr 20 2021


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS



STATUS

approved



