login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of related numbers (counted in A073757) belonging to n: a(n) = A000203(n) + A023896(n) - 1; related = {divisor-set, RRS}.
5

%I #17 Apr 07 2021 15:06:50

%S 1,3,6,10,15,17,28,30,39,37,66,51,91,65,83,94,153,92,190,121,157,145,

%T 276,155,280,197,282,223,435,191,496,318,377,325,467,306,703,401,523,

%U 409,861,347,946,523,617,577,1128,507,1085,592,887,721,1431,605,1171

%N Sum of related numbers (counted in A073757) belonging to n: a(n) = A000203(n) + A023896(n) - 1; related = {divisor-set, RRS}.

%C Sum of 1 <= m <= n such that gcd(m, n) is either 1 or m. - _Michael De Vlieger_, Apr 07 2021.

%H Michael De Vlieger, <a href="/A083266/b083266.txt">Table of n, a(n) for n = 1..10000</a>

%e n=10: related terms = {1,2,5,10,3,7,9}, sum = 1+2+5+10+1+3+7+9-1 = 37 = a(10).

%t Table[DivisorSigma[1, n] + Total@ Select[Range[2, n - 1], GCD[n, #] == 1 &], {n, 55}] (* or *)

%t {1}~Join~Array[DivisorSigma[1, #] + # EulerPhi[#]/2 - 1 &, 54, 2] (* _Michael De Vlieger_, Apr 07 2021 *)

%o (PARI) a(n)=if(n>1,sigma(n)+n*eulerphi(n)/2-1,1) \\ _Charles R Greathouse IV_, Feb 19 2013

%Y Cf. A073757 (count), A083267 (product), A083268 (lcm).

%K nonn,less

%O 1,2

%A _Labos Elemer_, May 13 2003