login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083239
First order recursion: a(0) = 1; a(n) = phi(n) - a(n-1) = A000010(n) - a(n-1).
1
1, 0, 1, 1, 1, 3, -1, 7, -3, 9, -5, 15, -11, 23, -17, 25, -17, 33, -27, 45, -37, 49, -39, 61, -53, 73, -61, 79, -67, 95, -87, 117, -101, 121, -105, 129, -117, 153, -135, 159, -143, 183, -171, 213, -193, 217, -195, 241, -225, 267, -247, 279, -255, 307, -289, 329, -305, 341, -313, 371, -355, 415, -385, 421, -389, 437, -417
OFFSET
0,6
COMMENTS
Provides interesting decomposition: phi(n) = u+w, where u and w consecutive terms of this sequence. Depends also on initial value.
LINKS
FORMULA
a(n) + a(n-1) = A000010(n).
a(n) = (-1)^n * (1 - A068773(n)) for n >= 1. - Amiram Eldar, Mar 05 2024
MAPLE
A083239 := proc(n)
option remember ;
if n = 0 then
1 ;
else
numtheory[phi](n)-procname(n-1) ;
end if;
end proc:
seq(A083239(n), n=0..100) ; # R. J. Mathar, Jun 20 2021
MATHEMATICA
a[n_] := a[n] = EulerPhi[n] -a[n-1]; a[0] = 1; Table[a[n], {n, 0, 100}]
PROG
(Python)
# uses programs from A002088 and A049690
def A083239(n): return A002088(n)-(A049690(n>>1)<<1)-1 if n&1 else 1+(A049690(n>>1)<<1)-A002088(n) # Chai Wah Wu, Aug 04 2024
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Labos Elemer, Apr 23 2003
EXTENSIONS
a(0)=1 prepended by R. J. Mathar, Jun 20 2021
STATUS
approved