|
|
A083234
|
|
a(n) = (3*10^n + 2^n)/4.
|
|
4
|
|
|
1, 8, 76, 752, 7504, 75008, 750016, 7500032, 75000064, 750000128, 7500000256, 75000000512, 750000001024, 7500000002048, 75000000004096, 750000000008192, 7500000000016384, 75000000000032768, 750000000000065536
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Binomial transform of A066443.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..300
Index entries for linear recurrences with constant coefficients, signature (12,-20).
|
|
FORMULA
|
a(n) = (3*10^n + 2^n)/4.
G.f.: (1-4*x)/((1-10*x)*(1-2*x)).
E.g.f.: (3*exp(10*x) + exp(2*x))/4.
a(n) = 12*a(n-1)-20*a(n-2). - Wesley Ivan Hurt, Apr 24 2021
|
|
MATHEMATICA
|
Table[(3*10^n + 2^n)/4, {n, 0, 20}] (* Wesley Ivan Hurt, Apr 24 2021 *)
|
|
PROG
|
(MAGMA)[(3*10^n+2^n)/4: n in [0..25]]; // Vincenzo Librandi, Jun 29 2011
(PARI) a(n)=(3*10^n+2^n)/4 \\ Charles R Greathouse IV, Jun 29 2011
|
|
CROSSREFS
|
Cf. A066443, A082724.
Sequence in context: A239549 A247828 A303736 * A247744 A144851 A233827
Adjacent sequences: A083231 A083232 A083233 * A083235 A083236 A083237
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Paul Barry, Apr 23 2003
|
|
STATUS
|
approved
|
|
|
|