

A082912


Least k such that H(k) > 10^n, where H(k) is the harmonic number Sum_{i=1..k} 1/i.


1




OFFSET

0,1


COMMENTS

"In 1968 John W. Wrench Jr calculated the exact minimum number of terms needed for the series to sum past 100; that number is 15 092 688 622 113 788 323 693 563 264 538 101 449 859 497. Certainly, he did not add up the terms.
"Imagine a computer doing so and suppose that it takes it 10^9 seconds to add each new term to the sum and that we set it adding and let it continue doing so indefinitely. The job will have been completed in not less than 3.5 * 10^17 (American) billion years." Havil.


REFERENCES

Julian Havil, Gamma, Exploring Euler's Constant, Princeton University Press, Princeton and Oxford, 2003, page 23.


LINKS



FORMULA

H(k) ~= log(k) + Euler's Gamma Constant (A001620) + 1/(2k).


MATHEMATICA

f[n_] := Floor[Exp[n  EulerGamma]  1/2] + 1; Table[ f[10^n], {n, 0, 2}]


CROSSREFS



KEYWORD

nonn,bref


AUTHOR



STATUS

approved



