OFFSET
1,2
COMMENTS
More generally, if m is an integer and a(1)=1, a(n) = n*(a(n-1) + a(n-2) + ... + a(2) + a(1)) + m then a(n) has a closed form formula as a(n) = floor/ceiling(n*r(m)*n!) where r(m) = frac(e*m) + 0 or + 1/2 or -1/2 + integer. (See Example section.)
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..448
FORMULA
For n >= 2, a(n) = ceiling(n*(19/2 - 4*e)*n!).
EXAMPLE
r(10) = frac(10*e) + 1/2 + 2;
r(12) = frac(12*e) - 1/2 + 3;
r(15) = frac(15*e) + 3;
r(18) = frac(18*e) - 1/2 + 4.
MATHEMATICA
nxt[{n_, t_, a_}]:=Module[{c=t(n+1)+4}, {n+1, t+c, c}]; NestList[nxt, {1, 1, 1}, 20][[;; , 3]] (* Harvey P. Dale, Mar 28 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Apr 24 2003
STATUS
approved