Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Sep 08 2022 08:45:10
%S 12,20,34,42,56,64,78,86,100,108,122,130,144,152,166,174,188,196,210,
%T 218,232,240,254,262,276,284,298,306,320,328,342,350,364,372,386,394,
%U 408,416,430,438,452,460,474,482,496,504,518,526,540,548,562,570,584
%N Solutions to 13^x+17^x == 19 mod 23.
%H Colin Barker, <a href="/A082296/b082296.txt">Table of n, a(n) for n = 1..1000</a>
%H Cino Hilliard, <a href="http://groups.msn.com/BC2LCC/page.msnw?fc_p=%2FSicurv%20%2D%20Simul%20Equ%20and%20Curve%20Fitting&fc_a=0">Simultaneous Equations and Curve Fitting.</a> [broken link]
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).
%F Numbers of the form 11*n+1 with n odd or 11*n-2 with n even.
%F From _Colin Barker_, Jun 09 2016: (Start)
%F a(n) = (-1-3*(-1)^n+22*n)/2.
%F a(n) = a(n-1)+a(n-2)-a(n-3) for n>3.
%F G.f.: 2*x*(6+4*x+x^2) / ((1-x)^2*(1+x)).
%F (End)
%t Table[If[OddQ[n], 11n + 1, 11 n - 2], {n, 60}] (* _Vincenzo Librandi_, Jun 09 2016 *)
%o (PARI) anpbn(n) = { for(x=1,n, if((13^x+17^x-19)%23==0,print1(x", "))) }
%o (Magma) [IsOdd(n) select 11*n+1 else 11*n-2: n in [1..60]]; // _Vincenzo Librandi_, Jun 09 2016
%o (PARI) Vec(2*x*(6+4*x+x^2)/((1-x)^2*(1+x)) + O(x^100)) \\ _Colin Barker_, Jun 09 2016
%K easy,nonn
%O 1,1
%A _Cino Hilliard_, May 10 2003