login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082296
Solutions to 13^x+17^x == 19 mod 23.
1
12, 20, 34, 42, 56, 64, 78, 86, 100, 108, 122, 130, 144, 152, 166, 174, 188, 196, 210, 218, 232, 240, 254, 262, 276, 284, 298, 306, 320, 328, 342, 350, 364, 372, 386, 394, 408, 416, 430, 438, 452, 460, 474, 482, 496, 504, 518, 526, 540, 548, 562, 570, 584
OFFSET
1,1
FORMULA
Numbers of the form 11*n+1 with n odd or 11*n-2 with n even.
From Colin Barker, Jun 09 2016: (Start)
a(n) = (-1-3*(-1)^n+22*n)/2.
a(n) = a(n-1)+a(n-2)-a(n-3) for n>3.
G.f.: 2*x*(6+4*x+x^2) / ((1-x)^2*(1+x)).
(End)
MATHEMATICA
Table[If[OddQ[n], 11n + 1, 11 n - 2], {n, 60}] (* Vincenzo Librandi, Jun 09 2016 *)
PROG
(PARI) anpbn(n) = { for(x=1, n, if((13^x+17^x-19)%23==0, print1(x", "))) }
(Magma) [IsOdd(n) select 11*n+1 else 11*n-2: n in [1..60]]; // Vincenzo Librandi, Jun 09 2016
(PARI) Vec(2*x*(6+4*x+x^2)/((1-x)^2*(1+x)) + O(x^100)) \\ Colin Barker, Jun 09 2016
CROSSREFS
Sequence in context: A082800 A026041 A299028 * A187766 A260905 A211415
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, May 10 2003
STATUS
approved