login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081975
Triangular number pertaining to A081974. a(n) = A081974(n)*A081974(n+1).
3
3, 6, 10, 45, 36, 28, 91, 78, 66, 231, 210, 120, 276, 1035, 630, 378, 1431, 1378, 780, 990, 528, 496, 465, 300, 820, 3321, 3240, 2080, 5356, 5253, 1275, 1225, 1176, 1128, 4371, 4278, 4186, 5460, 4560, 11476, 11325, 2775, 666, 2016, 12880, 6555, 1596
OFFSET
1,1
COMMENTS
A subset of A000217. - R. J. Mathar, Apr 05 2007
MAPLE
isA000217 := proc(n) local t; t := (sqrt(1+8*n)-1)/2 ; type(t, 'integer'); end: A081974 := proc(nmax) local a, n, prodset; a := [1, 3] ; prodset := {3} ; while nops(a) < nmax do n := 2 ; while n in a or n*op(-1, a) in prodset or isA000217(n*op(-1, a)) = false do n := n+1 ; od ; prodset := prodset union { n*op(-1, a) } ; a := [op(a), n] ; od ; RETURN(a) ; end: A081975 := proc(nmax) local a ; a081974 := A081974(nmax) ; a := [] ; for i from 2 to nops(a081974) do a := [op(a), op(i, a081974)*op(i-1, a081974)] ; od ; RETURN(a) ; end: a := A081975(100) ; # R. J. Mathar, Apr 05 2007
MATHEMATICA
istriang[n_] := With[{x = Floor[Sqrt[2*n]]}, n == x*(x + 1)/2];
nmax = 47;
Clear[b, used, tris];
b[_] = 0; used[_] = 0; tris[_] = 0; b[1] = 1; used[1] = 1;
For[i = 2, i <= nmax+1, i++, f = b[i-1]; j = 2; While[used[j] == 1 || !istriang[f*j] || tris[f*j] == 1, j++]; b[i] = j; used[j] = 1; tris[f*j] = 1];
a[n_] := b[n]*b[n + 1];
Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, May 23 2024, after PARI code in A081974 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Apr 03 2003
EXTENSIONS
More terms from R. J. Mathar, Apr 05 2007
STATUS
approved