The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A081753 a(n) = floor(n/12) if n==2 (mod 12); a(n)=floor(n/12)+1 otherwise. 2
 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 8, 9, 9, 9, 9, 9, 9 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,13 COMMENTS a(2n)=dimension of M(2n), where M(2n) denotes the complex vector space of modular forms of weight 2n for the group : PSL2(Z). dimension of M(2n+1)=0. See A103221(n) for the dimension of M(2n). The Apostol reference, p. 119, eq. (9) uses even k. - Wolfdieter Lang, Sep 16 2016 The space of modular forms is generated by E_4 (A00009) and E_6 (A013973) both of even weight. This is why the space of modular forms of odd weight is trivial. - Michael Somos, Dec 11 2018 REFERENCES Apostol, Tom M., Modular Functions and Dirichlet Series in Number Theory, second edition, Springer, 1990. Yves Hellegouarch, "Invitation aux mathematiques de Fermat-Wiles", Dunod, 2eme edition, p. 285 LINKS Robert Israel, Table of n, a(n) for n = 0..10000 Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1). FORMULA a(n) = floor(n/12) if n==2 (mod 12); a(n) = floor(n/12) + 1 otherwise. G.f.: (1-x^2+x^3)/(1-x-x^12+x^13). - Robert Israel, Sep 16 2016 a(2*n) = A008615(n+2), a(2*n+1) = A097992(n). - Michael Somos, Dec 11 2018 EXAMPLE G.f. = 1 + x + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + 2*x^12 + ... - Michael Somos, Dec 11 2018 MAPLE seq(floor(n/12)+1-charfcn[0](n-2 mod 12), n=0..100); # Robert Israel, Sep 16 2016 MATHEMATICA Table[If[Mod[n, 12] == 2, Floor[n/12], Floor[n/12] + 1], {n, 0, 120}] (* or *) CoefficientList[Series[(1 - x^2 + x^3)/(1 - x - x^12 + x^13), {x, 0, 120}], x] (* Michael De Vlieger, Sep 19 2016 *) a[ n_] := Quotient[n, 12] + Boole[Mod[n, 12] != 2]; (* Michael Somos, Dec 11 2018 *) PROG (PARI) a(k)=if(k%12-2, floor(k/12)+1, floor(k/12)) (PARI) {a(n) = n\12 + (n%12!=2)}; /* Michael Somos, Dec 11 2018 */ CROSSREFS Cf. A008615, A097992, A103221. Sequence in context: A271824 A253589 A023568 * A232551 A261129 A309121 Adjacent sequences:  A081750 A081751 A081752 * A081754 A081755 A081756 KEYWORD nonn,easy AUTHOR Benoit Cloitre, Apr 08 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 23 19:45 EST 2020. Contains 331175 sequences. (Running on oeis4.)