login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Third row of Pascal-(1,4,1) array A081579.
5

%I #17 Sep 08 2022 08:45:09

%S 1,11,46,106,191,301,436,596,781,991,1226,1486,1771,2081,2416,2776,

%T 3161,3571,4006,4466,4951,5461,5996,6556,7141,7751,8386,9046,9731,

%U 10441,11176,11936,12721,13531,14366,15226,16111,17021,17956,18916,19901

%N Third row of Pascal-(1,4,1) array A081579.

%H G. C. Greubel, <a href="/A081587/b081587.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = (2 - 5*n + 25*n^2)/2.

%F G.f.: (1+4*x)^2/(1-x)^3.

%F a(n) = a(n-1) + 25*n - 15 with a(0)=1. - _Vincenzo Librandi_, Aug 08 2010

%F E.g.f.: (1/2)*(2 + 20*x + 25*x^2)*exp(x). - _G. C. Greubel_, May 26 2021

%e a(1)=25*1+1-15=11; a(2)=25*2+11-15=46; a(3)=25*3+46-15=106.

%t ((10*Range[0,40]-1)^2 +7)/8 (* _G. C. Greubel_, May 26 2021 *)

%o (PARI) a(n)=5*n*(5*n-1)/2+1 \\ _Charles R Greathouse IV_, Jun 16 2017

%o (Magma) [(2-5*n+25*n^2)/2: n in [0..50]]; // G. C. Greubel, May 26 2021

%o (Sage) [((10*n-1)^2 +7)/8 for n in (0..40)] # _G. C. Greubel_, May 26 2021

%Y Cf. A016861, A081588.

%K easy,nonn

%O 0,2

%A _Paul Barry_, Mar 23 2003