login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A081443
Binomial transform of expansion of cosh(sinh(x)).
2
1, 1, 2, 4, 12, 36, 128, 456, 1872, 7888, 37600, 184064, 990784, 5444544, 32333824, 195982208, 1272660224, 8441139456, 59527313920, 428299217920, 3252626013184, 25165446157312, 204354574172160, 1689266143553536, 14594815769038848
OFFSET
0,3
COMMENTS
Binomial transform of A003709 (unsigned, with periodic zeros added).
LINKS
FORMULA
E.g.f.: exp(x)*cosh(sinh(x)).
MAPLE
seq(coeff(series(exp(x)*cosh(sinh(x)), x, n+1)*factorial(n), x, n), n = 0 .. 30); # G. C. Greubel, Aug 14 2019
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Exp[x]Cosh[Sinh[x]], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Nov 14 2011 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(serlaplace( exp(x)*cosh(sinh(x)) )) \\ G. C. Greubel, Aug 14 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x)*Cosh(Sinh(x)) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 14 2019
(Sage) [factorial(n)*( exp(x)*cosh(sinh(x)) ).series(x, n+1).list()[n] for n in (0..30)] # G. C. Greubel, Aug 14 2019
CROSSREFS
Sequence in context: A148211 A369688 A009152 * A086647 A268600 A187119
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 22 2003
STATUS
approved