Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Oct 05 2024 09:10:18
%S 0,0,1,0,2,1,1,1,1,1,1,1,2,3,2,1,2,2,2,2,1,1,3,3,3,3,2,1,1,1,1,2,2,2,
%T 2,1,1,2,3,2,3,2,3,3,2,3,3,4,3,2,2,2,2,1,1,2,1,1,2,2,3,3,3,2,4,2,2,3,
%U 3,3,3,4,4,5,4,4,2,3,3,2,2,2,4,3,3,4,3,4,5,4,2,2,2,3,5,5,5,5,3,2,3,2,3,3,3
%N Number of non-unitary prime divisors of central binomial coefficient, C(2n,n) = A000984(n), i.e., number of prime factors in C(2n,n) whose exponent is greater than one.
%H T. D. Noe, <a href="/A081387/b081387.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A056170(A000984(n)) = A001221(A000984(n)) - A081386(n) = A067434(n) - A081386(n).
%e For n = 14: binomial(28,14) = 40116600 = 2*2*2*3*3*3*5*5*17*19*23; unitary prime divisors: {17,19,23}; non-unitary prime divisors: {2,3,5}, so a(14) = 3.
%t Table[Count[Transpose[FactorInteger[Binomial[2n,n]]][[2]],_?(#>1&)],{n,110}] (* _Harvey P. Dale_, Oct 08 2012 *)
%o (PARI) a(n) = {my(e = factor(binomial(2*n, n))[, 2]); sum(k = 1, #e, e[k] > 1);} \\ _Amiram Eldar_, Oct 05 2024
%Y Cf. A000984, A034444, A048105, A056169, A056170, A067434, A081387, A081388, A081389.
%K nonn
%O 1,5
%A _Labos Elemer_, Mar 27 2003