OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
EXAMPLE
k = 412 = 2*2*103: sigma(412) = 728 = 2*2*2*7*13, phi(412) = 204 = 2*2*3*17, the sums of prime factors are identical (2 + 7 + 13 = 22 = 2 + 3 + 17) but the prime sets are different: {2,7,13} vs. {2,7,17}.
MATHEMATICA
ffi[x_] := Flatten[FactorInteger[x]]; lf[x_] := Length[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; spf[x_] := Apply[Plus, ba[x]]; k=0; Do[s=ba[DivisorSigma[1, n]]; s1=ba[EulerPhi[n]]; s3=spf[DivisorSigma[1, n]]; s4=spf[EulerPhi[n]]; If[ !Equal[s, s1]&&Equal[s3, s4], k=k+1; Print[{n, s, s1, ba[n], s3}]], {n, 1, 10000}]
PROG
(PARI) is(n) = {my(f = factor(n), p1 = factor(sigma(f))[, 1], p2 = factor(eulerphi(f))[, 1]); p1 != p2 && vecsum(p1) == vecsum(p2) ; } \\ Amiram Eldar, Mar 25 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Mar 26 2003
STATUS
approved