login
A081378
Numbers k for which the sums of prime factors (ignoring multiplicity) of sigma(k) and phi(k) are equal but the sets of prime factors of sigma and phi are different.
3
412, 1142, 1236, 1328, 1339, 1703, 2855, 2875, 2884, 3406, 3426, 3668, 3708, 3984, 4017, 5109, 5356, 5710, 5750, 5924, 6003, 6281, 6399, 6413, 6640, 6812, 7994, 8054, 8318, 8515, 8565, 8611, 8625, 8652, 8843, 8858, 9373, 9707, 9991
OFFSET
1,1
LINKS
EXAMPLE
k = 412 = 2*2*103: sigma(412) = 728 = 2*2*2*7*13, phi(412) = 204 = 2*2*3*17, the sums of prime factors are identical (2 + 7 + 13 = 22 = 2 + 3 + 17) but the prime sets are different: {2,7,13} vs. {2,7,17}.
MATHEMATICA
ffi[x_] := Flatten[FactorInteger[x]]; lf[x_] := Length[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; spf[x_] := Apply[Plus, ba[x]]; k=0; Do[s=ba[DivisorSigma[1, n]]; s1=ba[EulerPhi[n]]; s3=spf[DivisorSigma[1, n]]; s4=spf[EulerPhi[n]]; If[ !Equal[s, s1]&&Equal[s3, s4], k=k+1; Print[{n, s, s1, ba[n], s3}]], {n, 1, 10000}]
PROG
(PARI) is(n) = {my(f = factor(n), p1 = factor(sigma(f))[, 1], p2 = factor(eulerphi(f))[, 1]); p1 != p2 && vecsum(p1) == vecsum(p2) ; } \\ Amiram Eldar, Mar 25 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Mar 26 2003
STATUS
approved