The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A081113 Number of paths of length n-1 a king can take from one side of an n X n chessboard to the opposite side. 3
 1, 4, 17, 68, 259, 950, 3387, 11814, 40503, 136946, 457795, 1515926, 4979777, 16246924, 52694573, 170028792, 546148863, 1747255194, 5569898331, 17698806798, 56076828573, 177208108824, 558658899825, 1757365514652 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) = number of sequences (a_1,a_2,...,a_n) with 1<=a_i<=n for all i and |a_(i+1)-a_(i)|<=1 for 1<=i<=n-1. For n=2 the sequences are 11, 12, 21, 22. - David Callan, Oct 24 2004 Simon Plouffe proposes the ordinary generating function A(x) (for offset zero) in the implicit form 3-10*x+12*x^2+(-4+30*x+54*x^3-72*x^2)*A(x)+(81*x^4+54*x^2+1-12*x-108*x^3)*A(x)^2 = 0 which delivers at least the first 200 terms (i.e., as far as tested) correctly. - David Scambler, R. J. Mathar, Jan 06 2011 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 Simon Plouffe, OEIS conjectured formulas. D. Yaqubi, M. Farrokhi D. G., and H. Ghasemian Zoeram, Lattice paths inside a table, I , arXiv:1612.08697 [math.CO], 2016-2017. FORMULA a(n) = Sum_{k=1..n} k*(n-k+1)*M(n-1, k-1) where k*(n-k+1) is the triangular view of A003991 and M() is the Motzkin triangle A026300. Conjecture: g.f.(x)=z*A064808(z), where z=x*A001006(x) and A...(x) are the corresponding generating functions. - R. J. Mathar, Jul 07 2009 Conjecture from WolframAlpha (verified for 1<=n<=180): (n+3)*a(n+4) = 27*n*a(n) +27*a(n+1) -9*(2*n+5)*a(n+2) +(8*n+21)*a(n+3). - Alexander R. Povolotsky, Jan 04 2011 Shorter recurrence: (n-1)*(2*n-7)*a(n) = (10*n^2-39*n+23)*a(n-1) - 3*(2*n^2-n-9)*a(n-2) - 9*(n-3)*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 28 2012 a(n) ~ 3^(n-1)*n*(1-4/(sqrt(3*Pi*n))). - Vaclav Kotesovec, Oct 28 2012 a(n) = (n+2)*3^(n-2)+2*Sum_{k=0..n-3} (n-k-2)*3^(n-k-3)*A001006(k). [Yaqubi Corollary 2.8] - R. J. Mathar, Dec 13 2017 EXAMPLE For n=2 the 4 paths are (0,0)->(0,1); (0,0)->(1,1); (1,0)->(0,1); (1,0)->(1,1). MAPLE A026300 := proc(n, k) add( binomial(n, 2*i+n-k)*(binomial(2*i+n-k, i) -binomial(2*i+n-k, i-1)), i=0..floor(k/2)) ; end proc: A081113 := proc(n) add(k*(n-k+1)*A026300(n-1, k-1), k=1..n) ; end proc: seq(A081113(n), n=1..20) ; # R. J. Mathar, Jun 09 2010 MATHEMATICA t[n_, k_] := Sum[ Binomial[n, 2i + n - k] (Binomial[2i + n - k, i] - Binomial[2i + n - k, i - 1]), {i, 0, Floor[k/2]}] (* from A026300 *); f[n_] := Sum[ k(n - k + 1)t[n - 1, k - 1], {k, n}]; Array[f, 24] CROSSREFS Cf. A005773 (paths which begin at a corner), diagonal of A296449. Sequence in context: A030529 A266862 A239845 * A114587 A268431 A033114 Adjacent sequences:  A081110 A081111 A081112 * A081114 A081115 A081116 KEYWORD easy,nonn AUTHOR David Scambler, Apr 16 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 13:24 EST 2021. Contains 349563 sequences. (Running on oeis4.)