login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080861
a(n) = 15*n^2 + 6*n + 1.
2
1, 22, 73, 154, 265, 406, 577, 778, 1009, 1270, 1561, 1882, 2233, 2614, 3025, 3466, 3937, 4438, 4969, 5530, 6121, 6742, 7393, 8074, 8785, 9526, 10297, 11098, 11929, 12790, 13681, 14602, 15553, 16534, 17545, 18586, 19657, 20758, 21889, 23050, 24241, 25462, 26713, 27994
OFFSET
0,2
COMMENTS
The old definition of this sequence was "Generalized polygonal numbers".
Column T(n,6) of A080853.
FORMULA
a(n) = C(6,0) + C(6,1)*n + C(6,2)*n^2.
G.f.: (C(5,0) + (C(7,2)-2)*x + C(5,2)*x^2)/(1-x)^3 = (1 + 19*x + 10*x^2)/(1-x)^3.
From Elmo R. Oliveira, Oct 20 2024: (Start)
E.g.f.: exp(x)*(1 + 21*x + 15*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
MATHEMATICA
CoefficientList[Series[(1 + 19 x + 10 x^2) / (1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 05 2013 *)
LinearRecurrence[{3, -3, 1}, {1, 22, 73}, 40] (* Harvey P. Dale, Sep 28 2019 *)
PROG
(Magma) [15*n^2 + 6*n + 1 : n in [0..40]]; // Vincenzo Librandi, Aug 05 2013
(PARI) a(n)=15*n^2+6*n+1 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Cf. A080853.
Sequence in context: A044160 A044541 A251286 * A241521 A143838 A282723
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Feb 23 2003
EXTENSIONS
Definition replaced with the closed form by Bruno Berselli, Jan 16 2013
STATUS
approved