login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080692
a(n)=(-1)^(n+1)*det(M(n)) where M(n) is the n X n matrix M(i,j)=min(abs(i-j),i).
1
0, 1, 3, 8, 18, 40, 88, 192, 400, 832, 1728, 3584, 7424, 15360, 31744, 65536, 133120, 270336, 548864, 1114112, 2260992, 4587520, 9306112, 18874368, 38273024, 77594624, 157286400, 318767104, 645922816, 1308622848, 2650800128
OFFSET
1,3
COMMENTS
A001787(n-1) is the determinant of the n X n matrix M(i,j)=min(abs(i-j),i+j)
FORMULA
a(n) = 2*a(n-1) + 2^floor(n-log(n)/log(2)-1) = 2*a(n-1) + A054243(n). [corrected by Vaclav Kotesovec, Aug 23 2024]
a(n) ~ 2^(n-1) * (c*(log(n) + gamma) - 1), where gamma is the Euler-Mascheroni constant A001620 and 1/2 < c < 1. Conjecture: c = 1/sqrt(2). - Vaclav Kotesovec, Aug 23 2024
EXAMPLE
M(5) is [0 1 1 1 1] [1 0 1 2 2] [2 1 0 1 2] [3 2 1 0 1] [4 3 2 1 0].
MATHEMATICA
Table[(-1)^(n+1) * Det[Table[Min[Abs[i-j], i], {i, 1, n}, {j, 1, n}]], {n, 1, 30}] (* Vaclav Kotesovec, Aug 23 2024 *)
PROG
(PARI) a(n)=(-1)^(n+1)*matdet(matrix(n, n, i, j, min(abs(i-j), i)))
CROSSREFS
Sequence in context: A026657 A036384 A294591 * A117080 A240135 A066425
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Mar 03 2003
STATUS
approved