login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080687
Number of labeled n-element posets with no 3-element antichain.
2
1, 1, 3, 18, 174, 2370, 41850, 908460, 23393160, 696752280, 23558056200, 891259815600, 37298874135600, 1710662148795600, 85319825069278800, 4597474487169564000, 266164417718126928000, 16475817276720193392000
OFFSET
0,3
LINKS
Graham Brightwell and Sarah Goodall, The number of partial orders of fixed width, Order, 13 (1996), 315-337.
FORMULA
E.g.f.: (3-2*x-sqrt(1-4*x)) / (2-2*x+x^2).
a(n) ~ n^(n-1)*2^(2*n+7/2)/(25*exp(n)). - Vaclav Kotesovec, Sep 29 2013
a(n) = 2^(-(n+2))*n!*((3-i)*(1-i)^n + (3+i)*(1+i)^n - (1+i)*(-8)^n*binomial(1/2,n)*(2F1(1,-n; 3/2 - n; (1-i)/8) - i*2F1(1, -n; 3/2 - n; (1+i)/8))). - Benedict W. J. Irwin, May 27 2016
D-finite with recurrence 2*a(n) +2*(-5*n+6)*a(n-1) +3*(n-1)*(3*n-4)*a(n-2) -2*(n-1)*(n-2)*(2*n-3)*a(n-3)=0. - R. J. Mathar, Feb 08 2021
MAPLE
A080687 := proc(n)
(3-2*x-sqrt(1-4*x)) / (2-2*x+x^2) ;
coeftayl(%, x=0, n) ;
%*n! ;
end proc:
seq(A080687(n), n=0..30) ; # R. J. Mathar, Feb 08 2021
MATHEMATICA
CoefficientList[Series[(3-2*x-Sqrt[1-4*x])/(2-2*x+x^2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 29 2013 *)
Table[2^(-(n + 2)) n! ((3 - I) (1 - I)^n + (3 + I) (1 + I)^n - (1 + I) (-8)^n Binomial[1/2, n] (Hypergeometric2F1[1, -n, 3/2 - n, (1 - I)/8] - I*Hypergeometric2F1[1, -n, 3/2 - n, (1 + I)/8])), {n, 0, 10}] (* Benedict W. J. Irwin, May 27 2016 *)
CROSSREFS
Cf. A006251 for the unlabeled analog.
Sequence in context: A328031 A005192 A365600 * A231619 A223895 A111465
KEYWORD
nonn
AUTHOR
Detlef Pauly (dettodet(AT)yahoo.de), Mar 03 2003
STATUS
approved