%I #13 Feb 17 2021 09:23:56
%S 3,10,32,73,457,1994,6407,29489,148253,852592,5420543,37975111,
%T 290066507,2400720769,21396506651,204322668174,2081209926313,
%U 22523982873141,258105780607144,3121989826825492,39750408190737416
%N Boustrophedon transform of the continued fraction of Pi (cf. A001203).
%H J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J.Combin. Theory, 17A (1996) 44-54 (<a href="http://neilsloane.com/doc/bous.txt">Abstract</a>, <a href="http://neilsloane.com/doc/bous.pdf">pdf</a>, <a href="http://neilsloane.com/doc/bous.ps">ps</a>).
%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%H <a href="/index/Bo#boustrophedon">Index entries for sequences related to boustrophedon transform</a>
%F a(n) appears to be asymptotic to C*n!*(2/Pi)^n where C=136.651536367325329682973604897976758877614262731284965133228708820... - _Benoit Cloitre_ and Mark Hudson (mrmarkhudson(AT)hotmail.com)
%e We simply apply the Boustrophedon transform to [3,7,15,1,292,1,1,1,...]
%Y Cf. A001203, A000796.
%K nonn,easy
%O 0,1
%A Mark Hudson (mrmarkhudson(AT)hotmail.com), Feb 17 2003