login
Boustrophedon transform of the continued fraction of Pi (cf. A001203).
3

%I #13 Feb 17 2021 09:23:56

%S 3,10,32,73,457,1994,6407,29489,148253,852592,5420543,37975111,

%T 290066507,2400720769,21396506651,204322668174,2081209926313,

%U 22523982873141,258105780607144,3121989826825492,39750408190737416

%N Boustrophedon transform of the continued fraction of Pi (cf. A001203).

%H J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J.Combin. Theory, 17A (1996) 44-54 (<a href="http://neilsloane.com/doc/bous.txt">Abstract</a>, <a href="http://neilsloane.com/doc/bous.pdf">pdf</a>, <a href="http://neilsloane.com/doc/bous.ps">ps</a>).

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%H <a href="/index/Bo#boustrophedon">Index entries for sequences related to boustrophedon transform</a>

%F a(n) appears to be asymptotic to C*n!*(2/Pi)^n where C=136.651536367325329682973604897976758877614262731284965133228708820... - _Benoit Cloitre_ and Mark Hudson (mrmarkhudson(AT)hotmail.com)

%e We simply apply the Boustrophedon transform to [3,7,15,1,292,1,1,1,...]

%Y Cf. A001203, A000796.

%K nonn,easy

%O 0,1

%A Mark Hudson (mrmarkhudson(AT)hotmail.com), Feb 17 2003