%I #20 Sep 10 2019 03:02:09
%S 12,30,56,84,90,132,154,182,220,252,280,306,312,340,374,380,408,418,
%T 440,456,462,476,532,552,598,616,624,630,644,650,660,690,756,828,840,
%U 858,870,880,884,900,918,936,952,966,986,992,1020,1054,1102,1116,1140,1160
%N Numbers k such that there are exactly 7 numbers j for which binomial(k, floor(k/2)) / binomial(k,j) is an integer, i.e., A080383(k) = 7.
%H Vaclav Kotesovec, <a href="/A080385/b080385.txt">Table of n, a(n) for n = 1..4963</a>
%e For n=12, the central binomial coefficient (C(12,6) = 924) is divisible by C(12,0), C(12,1), C(12,2), C(12,6), C(12,10), C(12,11), and C(12,12).
%Y Cf. A327430, A080384, A080386, A327431, A080387.
%Y Cf. A001405, A057977.
%K nonn
%O 1,1
%A _Labos Elemer_, Mar 12 2003
%E More terms from _Vaclav Kotesovec_, Sep 06 2019