login
A080364
Composite numbers whose least prime factor appears with multiplicity 1.
3
6, 10, 14, 15, 18, 21, 22, 26, 30, 33, 34, 35, 38, 39, 42, 46, 50, 51, 54, 55, 57, 58, 62, 65, 66, 69, 70, 74, 75, 77, 78, 82, 85, 86, 87, 90, 91, 93, 94, 95, 98, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 126, 129, 130, 133, 134, 138, 141, 142, 143, 145, 146
OFFSET
1,1
COMMENTS
Density is Sum_{p >= 2} 1/p * Product_{q <= p} (1 - 1/q) which is around 0.65. (In the sum and product, p and q are restricted to primes.) - Charles R Greathouse IV, Jan 09 2022
LINKS
EXAMPLE
50 = 2^1 * 5^2; least prime factor is 2, whose exponent is 1, so 50 is a term.
MATHEMATICA
mi[x_] := Part[Flatten[FactorInteger[x]], 1] k=0; Do[s=mi[n]; If[Equal[GCD[s, n/s], 1]&&!PrimeQ[n], Print[n]], {n, 2, 256}]
Select[Range[150], CompositeQ[#]&&FactorInteger[#][[1, 2]]==1&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 23 2021 *)
PROG
(PARI) is(n, f=factor(n))=n>1 && f[1, 2]==1 \\ Charles R Greathouse IV, Jan 09 2022
(PARI) is(n)=forprime(p=2, 97, if(n%p==0, return(n%p^2>0))); !ispower(n) && factor(n)[1, 2]==1 \\ Charles R Greathouse IV, Jan 09 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Labos Elemer, Feb 21 2003
EXTENSIONS
Edited by Jon E. Schoenfield, Jul 10 2018
STATUS
approved