Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #65 Aug 23 2024 02:09:29
%S 1,4,5,12,13,16,17,32,33,36,37,44,45,48,49,80,81,84,85,92,93,96,97,
%T 112,113,116,117,124,125,128,129,192,193,196,197,204,205,208,209,224,
%U 225,228,229,236,237,240,241,272,273,276,277,284,285,288,289,304,305,308
%N Partial sums of A038712.
%H Alois P. Heinz, <a href="/A080277/b080277.txt">Table of n, a(n) for n = 1..16383</a>
%H M. J. Bannister, Z. Cheng, W. E. Devanny, and D. Eppstein, <a href="http://arxiv.org/abs/1308.0403">Superpatterns and universal point sets</a>, 21st Int. Symp. Graph Drawing, 2013, arXiv:1308.0403 [cs.CG], 2013-2014.
%H M. J. Bannister, Z. Cheng, W. E. Devanny, and D. Eppstein, <a href="http://dx.doi.org/10.7155/jgaa.00318">Superpatterns and universal point sets</a>, Journal of Graph Algorithms and Applications 18(2) (2014), 177-209.
%H Klaus Brockhaus, <a href="/A038712/a038712.gif">Illustration of A038712 and A080277</a>.
%H B. Dearden, J. Iiams, and J. Metzger, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Dearden/dearden3r.html">A Function Related to the Rumor Sequence Conjecture</a>, J. Int. Seq. 14 (2011), #11.2.3.
%H Ralf Stephan, <a href="/somedcgf.html">Some divide-and-conquer sequences with (relatively) simple ordinary generating functions</a>, 2004.
%H Ralf Stephan, <a href="/A079944/a079944.ps">Table of generating functions</a>. [ps file]
%H Ralf Stephan, <a href="/A080277/a080277.pdf">Table of generating functions</a>. [pdf file]
%F a(n) is conjectured to be asymptotic to n*log(n)/log(2). - _Klaus Brockhaus_, Mar 23 2003 [See Bannister et al., 2013. - _N. J. A. Sloane_, Nov 26 2013]
%F a(n) = Sum_{k=0..log_2(n)} 2^k*floor(n/2^k).
%F a(2^k) = (k+1)*2^k.
%F a(n) = n + 2*a(floor(n/2)). - _Vladeta Jovovic_, Aug 06 2003
%F From _Ralf Stephan_, Sep 07 2003: (Start)
%F a(1) = 1, a(2*n) = 2*a(n) + 2*n, a(2*n+1) = 2*a(n) + 2*n + 1.
%F G.f.: 1/(1-x) * Sum(k >= 0, 2^k*t/(1-t), t = x^2^k). (End)
%F Product_{n >= 1} (1 + x^(n*2^(n-1))) = (1 + x)*(1 + x^4)*(1 + x^12)*(1 + x^32)*... = 1 + Sum_{n >= 1} x^a(n) = 1 + x + x^4 + x^5 + x^12 + x^13 + .... Hence this sequence lists the numbers representable as a sum of distinct elements of A001787 = [1, 4, 12, ..., n*2^(n-1), ...]. Cf. A050292. See also A120385. - _Peter Bala_, Feb 02 2013
%F n log_2 n - 2n < a(n) <= n log_2 n + n [Bannister et al., 2013] - _David Eppstein_, Aug 31 2013
%F G.f. A(x) satisfies: A(x) = 2*A(x^2)*(1 + x) + x/(1 - x)^2. - _Ilya Gutkovskiy_, Oct 30 2019
%F a(n) = A136013(2n). - _Pontus von Brömssen_, Sep 06 2020
%e From _Omar E. Pol_, Sep 10 2019: (Start)
%e Illustration of initial terms:
%e a(n) is also the total area (or the total number of cells) in first n regions of an infinite diagram of compositions (ordered partitions) of the positive integers, where the length of the n-th horizontal line segment is equal to A001511(n), the length of the n-th vertical line segment is equal to A006519(n), and area of the n-th region is equal to A038712(n), as shown below (first eight regions):
%e -----------------------------------
%e n A038712(n) a(n) Diagram
%e -----------------------------------
%e . _ _ _ _
%e 1 1 1 |_| | | |
%e 2 3 4 |_ _| | |
%e 3 1 5 |_| | |
%e 4 7 12 |_ _ _| |
%e 5 1 13 |_| | |
%e 6 3 16 |_ _| |
%e 7 1 17 |_| |
%e 8 15 32 |_ _ _ _|
%e .
%e The above diagram represents the eight compositions of 4: [1,1,1,1],[2,1,1],[1,2,1],[3,1],[1,1,2],[2,2],[1,3],[4].
%e (End)
%p a:= proc(n) option remember;
%p `if`(n=0, 0, a(n-1)+Bits[Xor](n, n-1))
%p end:
%p seq(a(n), n=1..58); # _Alois P. Heinz_, Feb 14 2023
%t Table[BitXor[n, n-1], {n, 1, 58}] // Accumulate (* _Jean-François Alcover_, Oct 24 2013 *)
%o (PARI) a(n) = fromdigits(Vec(Pol(binary(n<<1))'),2); \\ _Kevin Ryde_, Apr 29 2021
%Y Cf. A001787, A038712, A050292, A080333, A120385.
%Y See also A136013, A333979.
%K nonn
%O 1,2
%A _N. J. A. Sloane_, Mar 19 2003