login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A080032
a(n) is taken to be the smallest positive integer not already present which is consistent with the condition "n is a member of the sequence if and only if a(n) is even".
6
0, 2, 4, 1, 6, 7, 8, 10, 12, 11, 14, 16, 18, 15, 20, 22, 24, 19, 26, 28, 30, 23, 32, 34, 36, 27, 38, 40, 42, 31, 44, 46, 48, 35, 50, 52, 54, 39, 56, 58, 60, 43, 62, 64, 66, 47, 68, 70, 72, 51, 74, 76, 78, 55, 80, 82, 84, 59, 86, 88, 90, 63, 92, 94, 96, 67, 98, 100, 102, 71, 104
OFFSET
0,2
COMMENTS
The same sequence, but without the initial 0, obeys the rule: "The concatenation of a(n) and a(a(n)) is even". Example: "2" and the 2nd term, concatenated, is 24; "4" and the 4th term, concatenated, is 46; "1" and the 1st term, concatenated, is 12; etc. - Eric Angelini, Feb 22 2017
If "even" in the definition is replaced by "prime", we get A121053. - N. J. A. Sloane, Dec 14 2024
LINKS
Benoit Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
Benoit Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, arXiv:math/0305308 [math.NT], 2003.
FORMULA
For n >= 4 a(n) is given by: a(4m)=6m, a(4m+1)=4m+3, a(4m+2)=6m+2, a(4m+3)=6m+4.
From Chai Wah Wu, Apr 13 2024: (Start)
a(n) = 2*a(n-4) - a(n-8) for n > 11.
G.f.: x*(-3*x^10 + 2*x^9 - x^8 + 8*x^6 + 3*x^4 + 6*x^3 + x^2 + 4*x + 2)/(x^8 - 2*x^4 + 1). (End)
MATHEMATICA
CoefficientList[Series[x*(-3*x^10 + 2*x^9 - x^8 + 8*x^6 + 3*x^4 + 6*x^3 + x^2 + 4*x + 2)/(x^8 - 2*x^4 + 1), {x, 0, 120}], x] (* Michael De Vlieger, Dec 17 2024 *)
CROSSREFS
Cf. A079000, A080029, A080030, A121053. Equals A079313 - 1.
Sequence in context: A128860 A019680 A249144 * A297121 A105357 A346246
KEYWORD
easy,nonn
AUTHOR
N. J. A. Sloane, Mar 14 2003
EXTENSIONS
More terms from Matthew Vandermast, Mar 21 2003
STATUS
approved