OFFSET
1,2
COMMENTS
The sequence obeys the rule: "The concatenation of a(n) and a(a(n)) is odd". Example: "1" and the 1st term, concatenated, is 11; "3" and the 3rd term, concatenated, is 35; "5" and the 5th term, concatenated, is 57; "2" and the 2nd term, concatenated, is 23; etc.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10000
Benoit Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
Benoit Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, arXiv:math/0305308 [math.NT], 2003.
Index entries for linear recurrences with constant coefficients, signature (0,0,0,2,0,0,0,-1).
FORMULA
For n >= 5 a(n) is given by: a(4t-2) = 4t, a(4t-1) = 6t-3, a(4t) = 6t-1, a(4t+1) = 6t+1.
All odd numbers occur; the only even numbers which occur are 2 and the multiples of 4 excluding 4 itself.
From Chai Wah Wu, Apr 13 2024: (Start)
a(n) = 2*a(n-4) - a(n-8) for n > 12.
G.f.: x*(-3*x^11 + 2*x^10 - x^9 + 7*x^7 - x^6 + 2*x^5 + 5*x^4 + 2*x^3 + 5*x^2 + 3*x + 1)/(x^8 - 2*x^4 + 1). (End)
MATHEMATICA
Rest@ CoefficientList[Series[x*(-3*x^11 + 2*x^10 - x^9 + 7*x^7 - x^6 + 2*x^5 + 5*x^4 + 2*x^3 + 5*x^2 + 3*x + 1)/(x^8 - 2*x^4 + 1), {x, 0, 120}], x] (* Michael De Vlieger, Dec 17 2024 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
J. C. Lagarias and N. J. A. Sloane, Feb 11 2003
EXTENSIONS
More terms from Matthew Vandermast, Mar 20 2003
STATUS
approved