OFFSET
0,7
COMMENTS
Also, number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=3, r=3, I={-2,-1,0,2}. a(n)=A079980(k) if n=2k, a(n)=0 otherwise.
REFERENCES
D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.
LINKS
Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (2010), 119-135.
Index entries for linear recurrences with constant coefficients, signature (0,0,0,1,0,4,0,2,0,2,0,-2,0,1,0,0,0,1).
FORMULA
Recurrence: a(n) = a(n-4)+4*a(n-6)+2*a(n-8)+2*a(n-10)-2*a(n-12)+a(n-14)+a(n-18).
G.f.: -(x^12-2*x^6+1)/(x^18+x^14-2*x^12+2*x^10+2*x^8+4*x^6+x^4-1).
MATHEMATICA
LinearRecurrence[{0, 0, 0, 1, 0, 4, 0, 2, 0, 2, 0, -2, 0, 1, 0, 0, 0, 1}, {1, 0, 0, 0, 1, 0, 2, 0, 3, 0, 8, 0, 12, 0, 27, 0, 52, 0}, 80] (* Harvey P. Dale, Aug 18 2012 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Baltic, Feb 17 2003
STATUS
approved