login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079981
Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=3, r=3, I={-2,0,1,2}.
2
1, 0, 0, 0, 1, 0, 2, 0, 3, 0, 8, 0, 12, 0, 27, 0, 52, 0, 95, 0, 196, 0, 369, 0, 720, 0, 1408, 0, 2709, 0, 5292, 0, 10249, 0, 19894, 0, 38675, 0, 74992, 0, 145692, 0, 282823, 0, 549000, 0, 1066095, 0, 2069496, 0, 4018065, 0, 7801024, 0, 15144960, 0, 29404281, 0
OFFSET
0,7
COMMENTS
Also, number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=3, r=3, I={-2,-1,0,2}. a(n)=A079980(k) if n=2k, a(n)=0 otherwise.
REFERENCES
D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.
LINKS
Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (2010), 119-135.
Index entries for linear recurrences with constant coefficients, signature (0,0,0,1,0,4,0,2,0,2,0,-2,0,1,0,0,0,1).
FORMULA
Recurrence: a(n) = a(n-4)+4*a(n-6)+2*a(n-8)+2*a(n-10)-2*a(n-12)+a(n-14)+a(n-18).
G.f.: -(x^12-2*x^6+1)/(x^18+x^14-2*x^12+2*x^10+2*x^8+4*x^6+x^4-1).
MATHEMATICA
LinearRecurrence[{0, 0, 0, 1, 0, 4, 0, 2, 0, 2, 0, -2, 0, 1, 0, 0, 0, 1}, {1, 0, 0, 0, 1, 0, 2, 0, 3, 0, 8, 0, 12, 0, 27, 0, 52, 0}, 80] (* Harvey P. Dale, Aug 18 2012 *)
CROSSREFS
Bisection gives A079980 (even part).
Sequence in context: A317443 A308218 A067165 * A117776 A298610 A186492
KEYWORD
nonn,easy
AUTHOR
Vladimir Baltic, Feb 17 2003
STATUS
approved