login
A079630
Numbers n such that |real(zeta(1/2 + n*I))| exceeds all previous values, where zeta is the Riemann zeta function.
1
0, 10, 17, 18, 28, 46, 63, 109, 172, 281, 417, 652, 698, 852, 1269, 1550, 3100, 4478, 6726, 7578, 9654, 9826, 10678, 14304, 30775, 45079, 57552, 74956, 105731, 248917, 289346, 340761, 407722, 440699, 457170, 682764, 795112, 849038, 874546, 1138384
OFFSET
1,2
COMMENTS
If you begin at 1 instead of 0, the sequence begins 1,2,3,4,5,6,7,8,9,10,..., etc.
EXAMPLE
|real(zeta(1/2 + 1616584*I))| ~= 44.1381
MATHEMATICA
a = -1; Do[b = Abs[ Re[ N[ Zeta[0.5 + n*I]]]]; If[b > a, Print[n]; a = b], {n, 0, 10^6}]
DeleteDuplicates[Table[{n, Abs[Re[N[Zeta[1/2+n I]]]]}, {n, 0, 12*10^5}], GreaterEqual[ #1[[2]], #2[[2]]]&][[;; , 1]] (* Harvey P. Dale, Jul 29 2024 *)
CROSSREFS
Cf. A002410.
Sequence in context: A157159 A176664 A256346 * A175389 A350779 A280591
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Jan 30 2003
STATUS
approved