login
Consider pairs (r,s) such that the polynomial (x^r+1) divides (x^s+1) and 1 <= r < s. This sequence gives the s values; A079673 gives the r values.
3

%I #6 Oct 19 2017 03:14:11

%S 3,5,6,7,9,9,10,11,12,13,14,15,15,15,17,18,18,19,20,21,21,21,22,23,24,

%T 25,25,26,27,27,27,28,29,30,30,30,31,33,33,33,34,35,35,35,36,36,37,38,

%U 39,39,39,40,41,42,42,42,43,44,45,45,45,45,45,46,47,48,49,49,50,50,51

%N Consider pairs (r,s) such that the polynomial (x^r+1) divides (x^s+1) and 1 <= r < s. This sequence gives the s values; A079673 gives the r values.

%C (x^r+1) divides (x^s+1) iff s/r is an odd integer.

%e 9 is in the sequence twice because (x^1+1) and (x^3+1) divide (x^9+1).

%Y Cf. A079665, A079672, A079673.

%K nonn

%O 1,1

%A Jose R. Brox (tautocrona(AT)terra.es), Jan 25 2003

%E Edited by _Don Reble_, Jun 12 2003