Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Jan 17 2019 17:21:33
%S 0,1,3,10,31,105,343,1198,4056,14506,50350,183284,647809,2390121,
%T 8564543,31933830,115664164,434920398,1588917802,6016012236,
%U 22134533070,84289034154,311957090678,1193717733900,4440128821376,17060985356980,63732279047612,245768668712296,921501110779045
%N Diagonal of triangular array in A079520.
%H G. C. Greubel, <a href="/A079522/b079522.txt">Table of n, a(n) for n = 0..1000</a>
%H D. Merlini, R. Sprugnoli and M. C. Verri, <a href="http://dx.doi.org/10.1006/jcta.2002.3273">The tennis ball problem</a>, J. Combin. Theory, A 99 (2002), 307-344. (Fig A.3)
%F Let c, d, and g be given by: c(t) = (1-sqrt(1-4*t))/(2*t), d(t) = (1-(1+ 2*t)*sqrt(1-4*t) -(1-2*t)*sqrt(1+4*t) +sqrt(1-16*t^2))/(4*t^2), and
%F g(t, r) = d(t)*(t*c(t))^r*(t*c(t)^3 + 2*r*c(t)) then the g.f. is given by the expansion of g(t,0). - _G. C. Greubel_, Jan 17 2019
%e G.f. = 0 + 1*t + 3*t^2 + 10*t^3 + 31*t^4 + ... - _G. C. Greubel_, Jan 17 2019
%p F := proc(t) (1-4*t^2-(1+2*t)*sqrt(1-4*t)-(1-2*t)*sqrt(1+4*t)+ sqrt(1-16*t^2))/4/t^3 ; end: d := proc(t) 1+t*F(t) ; end: C := proc(t) (1-sqrt(1-4*t))/2/t ; end: A079521 := proc(h,r) d(t)*t^(r+1)*(C(t))^(r+3) ; expand(%) ; coeftayl(%,t=0,h) ; end: A079522 := proc(n) A079521(n,0) ; end: for n from 0 do printf("%d\n",A079522(n)) ; od: # _R. J. Mathar_, Sep 20 2009
%t c[t_]:= (1-Sqrt[1-4*t])/(2*t); d[t_]:= (1-(1+2*t)*Sqrt[1-4*t] -(1-2*t)* Sqrt[1+4*t] +Sqrt[1-16*t^2])/(4*t^2); g[t_, r_]:= d[t]*(t*c[t])^r*(t*c[t]^3 +2*r*c[t]); CoefficientList[Series[g[t, 0], {t, 0, 50}], t] (* _G. C. Greubel_, Jan 17 2019 *)
%Y Also diagonal of triangular array in A079521.
%Y Cf. A079513, A079520.
%K nonn
%O 0,3
%A _N. J. A. Sloane_, Jan 22 2003
%E More terms from _R. J. Mathar_, Sep 20 2009
%E Terms a(23) onward added by _G. C. Greubel_, Jan 17 2019