login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079295
(D(p)-6)/(12p) where D(p) denotes the denominator of the 2p-th Bernoulli number and p runs through the primes.
0
1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0
OFFSET
1,1
COMMENTS
If p is a Sophie Germain prime (A005384) then denominator(B(2p))= 6*(2p+1).
FORMULA
a(A053176(n))=0; a(A005384(n))=1.
a(n) = pi(2*prime(n) + 1) - pi(2*prime(n)), where pi(n) = A000720(n) and prime(n) = A000040(n). - Ridouane Oudra, Sep 02 2019
MATHEMATICA
dbn[n_]:=Module[{d=Denominator[BernoulliB[2n]]}, (d-6)/(12n)]; dbn/@ Prime[ Range[100]] (* Harvey P. Dale, May 19 2012 *)
PROG
(PARI) a(n) = my(p=prime(n)); (denominator(bernfrac(2*p)) - 6)/(12*p); \\ Michel Marcus, Sep 02 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Feb 09 2003
STATUS
approved