login
A079218
Triangle T(n,d) (listed row-wise: T(1,1)=1, T(2,1)=1, T(2,2)=1, T(3,1)=2, T(3,2)=2, T(3,3)=1, ...) giving the number of n-edge general plane trees with root degree d that are fixed by the two-fold application of Catalan Automorphisms A057511/A057512 (Deep rotation of general parenthesizations/plane trees).
5
1, 1, 1, 2, 2, 1, 5, 5, 0, 1, 11, 14, 0, 0, 1, 26, 36, 1, 2, 0, 1, 66, 94, 0, 0, 0, 0, 1, 161, 253, 0, 5, 0, 0, 0, 1, 420, 668, 2, 0, 0, 2, 0, 0, 1, 1093, 1807, 0, 14, 1, 0, 0, 0, 0, 1, 2916, 4902, 0, 0, 0, 0, 0, 0, 0, 0, 1, 7819, 13436, 5, 36, 0, 5, 0, 2, 0, 0, 0, 1, 21304, 37016, 0, 0, 0, 0
OFFSET
0,4
COMMENTS
Note: the counts given here are inclusive, i.e. T(n,d) includes also the count A079217(n,d).
MAPLE
[seq(A079218(n), n=0..119)]; A079218 := n -> PFixedByA057511(A003056(n)+1, 2, A002262(n)+1);
CROSSREFS
The row sums equal to the left edge shifted left once = A079223 = second row of A079216 (the latter gives the Maple procedure PFixedByA057511). Cf. also A079217-A079222 and A003056 & A002262.
Sequence in context: A136388 A099605 A288421 * A079220 A158068 A210879
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen Jan 03 2002
STATUS
approved