login
A079045
Coefficients of the polynomials in the numerator of the generating function f(x)=(x-x^2)/(x^3-2x^2-2x+1) for F(n)^2, (where F(n) is the Fibonacci sequence) and its successive derivatives starting with the constant.
1
0, 1, -1, 1, -2, 4, -2, 1, 2, 12, -24, 34, -24, 6, -2, 24, 24, 156, -384, 450, -336, 144, -24, 6, 216, 840, -480, 2640, -7080, 8592, -6360, 3120, -960, 120, -24, 3000, 10080, 16920, -37200, 72000, -154800, 198360, -156960, 82800, -30000, 7200, -720, 120
OFFSET
0,5
FORMULA
(d^(n)/d(x^n))f(x), where f(x)=(x-x^2)/(x^3-2x^2-2x+1), for n=0, 1, 2, 3, . ...
EXAMPLE
The coefficients of the first 2 polynomials in the numerator of the generating function f(x)=(x-x^2)/(x^3-2x^2-2x+1) for F(n)^2, (where F(n) is the Fibonacci sequence) and its successive derivatives starting with the constant: 0,1,-1; 1,-2,4,-2,1; . ...
CROSSREFS
Cf. A079046.
Sequence in context: A177002 A079046 A356474 * A021417 A368517 A355346
KEYWORD
sign,tabf
AUTHOR
Mohammad K. Azarian, Feb 01 2003
STATUS
approved