OFFSET
1,1
FORMULA
a(n) is asymptotic to c*n where c=19.7...
Conjecture: a(n) = floor( 2 * Pi^2 * n ), checked for n <= 10^4. - Vincenzo Librandi, Sep 03 2015
From Vaclav Kotesovec, Feb 15 2019: (Start)
Numbers k such that sin(k/(2*Pi)) * sin((k+1)/(2*Pi)) < 0.
Numbers k such that cos((2*k+1)/(2*Pi)) > cos(1/(2*Pi)).
Numbers k such that k+1 > 2*Pi^2*(floor(k/(2*Pi^2))+1).
Numbers k such that k mod (2*Pi^2) > 2*Pi^2 - 1.
(End)
MATHEMATICA
Select[Range[1, 1000], Sum[Sin[k/Pi], {k, 0, #}] < 0&] (* Vaclav Kotesovec, Feb 15 2019 *)
Select[Range[1, 1000], Cos[(2*# + 1)/(2*Pi)] > Cos[1/(2*Pi)]&] (* Vaclav Kotesovec, Feb 15 2019 *)
Select[Range[1, 1000], Mod[(2*# + 1)/(2*Pi), 2*Pi] < 1/(2*Pi) || Mod[(2*# + 1)/(2*Pi), 2*Pi] > 2*Pi - 1/(2*Pi) &] (* Vaclav Kotesovec, Feb 15 2019 *)
Select[Range[1, 1000], # + 1 > 2*Pi^2*(Floor[#/(2*Pi^2)] + 1) &] (* Vaclav Kotesovec, Feb 15 2019 *)
Select[Range[1, 1000], Mod[#, 2*Pi^2] > 2*Pi^2 - 1 &] (* Vaclav Kotesovec, Feb 15 2019 *)
PROG
(PARI) isok(n) = sum(k=0, n, sin(k/Pi)) < 0; \\ Michel Marcus, Nov 30 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Feb 01 2003
STATUS
approved