login
A078956
Primes p such that the differences between the 5 consecutive primes starting with p are (4,6,6,2).
2
43, 163, 643, 1213, 2953, 4003, 7573, 11923, 14533, 25453, 26683, 26713, 29863, 41593, 48523, 61543, 68473, 150193, 151153, 172423, 206803, 227593, 290023, 302563, 338563, 343813, 346543, 428023, 527053, 529033, 540373, 547483, 551713
OFFSET
1,1
COMMENTS
Equivalently, p, p+4, p+10, p+16 and p+18 are consecutive primes.
Subsequence of A078852. - R. J. Mathar, May 06 2017
All terms == 13 (mod 30). - Robert Israel, Oct 17 2023
LINKS
Jon E. Schoenfield, Table of n, a(n) for n = 1..10000 (first 1000 terms from Robert Israel)
EXAMPLE
43 is in the sequence since 43, 47, 53, 59 and 61 are consecutive primes.
MAPLE
L:= [0$5]:
p:= 1: R:= NULL: count:= 0:
while count < 100 do
p:= nextprime(p);
L:= [L[2], L[3], L[4], L[5], p];
if L -~ L[1] = [0, 4, 10, 16, 18] then
count:= count+1;
R:= R, L[1];
fi
od:
R; # Robert Israel, Oct 17 2023
MATHEMATICA
Select[Partition[Prime[Range[50000]], 5, 1], Differences[#]=={4, 6, 6, 2}&][[All, 1]] (* Harvey P. Dale, Jan 23 2021 *)
KEYWORD
nonn
AUTHOR
Labos Elemer, Dec 19 2002
EXTENSIONS
Edited by Dean Hickerson, Dec 20 2002
STATUS
approved