login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078751
Triangle read by rows: ss(m,k) = normalized partial derivative of (t,z)->exp(t g(z)) at (0,0), where 2 g(z)=1+exp(-2 z g(z)).
0
2, 4, 8, 24, 48, 48, 224, 480, 576, 384, 2880, 6400, 8640, 7680, 3840, 47232, 107520, 155520, 161280, 115200, 46080, 942592, 2182656, 3306240, 3763200, 3225600, 1935360, 645120, 22171648, 51996672, 81414144, 98703360, 94617600, 69672960
OFFSET
0,1
COMMENTS
Let g(z) = 1/2 + W(z/e^z)/(2 z), where W is Lambert's W-function; g satisfies 2 g(z)=1+exp(-2 z g(z)). Let c(m,n) be the coefficient of z^m in the Maclaurin series for g(z)^n; equivalently c(m,n) is 1/m! times the mixed partial derivative (d^(m+n) f(t,z))/(dz^m dt^n), where f(t,z) = exp(t g(z)). For 0<k<=m, let ss(m,k) = 2^k m! (-1)^(m-k) c(m-k,k). The sequence gives the values of ss in the order ss(1,1); ss(2,1), ss(2,2); ss(3,1), ss(3,2), ss(3,3); ...
FORMULA
c satisfies the recurrence c(m, k)=1/m sum_{j=1..m} (((k+1) j-m)c(m-j, k)c(j, 1)), where c(0, k)=1 and c(j, 1)= (1/2) (-1)^j 1/(j+1)! sum_{i=1..j+1} binomial(j+1, i) i^j.
EXAMPLE
2; 4,8; 24,48,48; 224,480,576,384; ...
MATHEMATICA
(* ccctri lists first numrows rows of triangular array. *)
ccctri[numrows_] := (s[j_] := Sum[Binomial[j, i] i^(j-1), {i, 1, j}]; r[j_] := 1/2 (-1)^j 1/(j+1)! s[j+1]; c[m_, k_] := 1/m Sum[((k+1) j-m)c[m-j, k]r[j], {j, 1, m}]; c[0, k_] := 1; ss[m_, k_] := 2^k m! (-1)^(m-k) c[m-k, k]; Flatten[Table[Table[ss[k, j], {j, 1, k}], {k, 1, numrows}]])
(* ccccol lists maxrow elements of column colnum. *)
ccccol[colnum_, maxrow_] := (s[j_] := Sum[Binomial[j, i] i^(j-1), {i, 1, j}]; r[j_] := 1/2 (-1)^j 1/(j+1)! s[j+1]; c[m_, k_] := 1/m Sum[((k+1) j-m)c[m-j, k]r[j], {j, 1, m}]; c[0, k_] := 1; ss[m_, k_] := 2^k m! (-1)^(m-k) c[m-k, k]; Table[ss[m, colnum], {m, colnum, maxrow}])
CROSSREFS
First column of triangular array (ss(m, 1) for m>=1) is A038049.
Sequence in context: A226659 A009327 A027168 * A290859 A290659 A286866
KEYWORD
nonn,tabl,easy
AUTHOR
Carmen Chicone (carmen(AT)chicone.math.missouri.edu), Dec 22 2002
EXTENSIONS
Edited by Dean Hickerson, Dec 30 2002
STATUS
approved