login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A078751 Triangle read by rows: ss(m,k) = normalized partial derivative of (t,z)->exp(t g(z)) at (0,0), where 2 g(z)=1+exp(-2 z g(z)). 0
2, 4, 8, 24, 48, 48, 224, 480, 576, 384, 2880, 6400, 8640, 7680, 3840, 47232, 107520, 155520, 161280, 115200, 46080, 942592, 2182656, 3306240, 3763200, 3225600, 1935360, 645120, 22171648, 51996672, 81414144, 98703360, 94617600, 69672960 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Let g(z) = 1/2 + W(z/e^z)/(2 z), where W is Lambert's W-function; g satisfies 2 g(z)=1+exp(-2 z g(z)). Let c(m,n) be the coefficient of z^m in the Maclaurin series for g(z)^n; equivalently c(m,n) is 1/m! times the mixed partial derivative (d^(m+n) f(t,z))/(dz^m dt^n), where f(t,z) = exp(t g(z)). For 0<k<=m, let ss(m,k) = 2^k m! (-1)^(m-k) c(m-k,k). The sequence gives the values of ss in the order ss(1,1); ss(2,1), ss(2,2); ss(3,1), ss(3,2), ss(3,3); ...

LINKS

Table of n, a(n) for n=0..33.

FORMULA

c satisfies the recurrence c(m, k)=1/m sum_{j=1..m} (((k+1) j-m)c(m-j, k)c(j, 1)), where c(0, k)=1 and c(j, 1)= (1/2) (-1)^j 1/(j+1)! sum_{i=1..j+1} binomial(j+1, i) i^j.

EXAMPLE

2; 4,8; 24,48,48; 224,480,576,384; ...

MATHEMATICA

(* ccctri lists first numrows rows of triangular array. *)

ccctri[numrows_] := (s[j_] := Sum[Binomial[j, i] i^(j-1), {i, 1, j}]; r[j_] := 1/2 (-1)^j 1/(j+1)! s[j+1]; c[m_, k_] := 1/m Sum[((k+1) j-m)c[m-j, k]r[j], {j, 1, m}]; c[0, k_] := 1; ss[m_, k_] := 2^k m! (-1)^(m-k) c[m-k, k]; Flatten[Table[Table[ss[k, j], {j, 1, k}], {k, 1, numrows}]])

(* ccccol lists maxrow elements of column colnum. *)

ccccol[colnum_, maxrow_] := (s[j_] := Sum[Binomial[j, i] i^(j-1), {i, 1, j}]; r[j_] := 1/2 (-1)^j 1/(j+1)! s[j+1]; c[m_, k_] := 1/m Sum[((k+1) j-m)c[m-j, k]r[j], {j, 1, m}]; c[0, k_] := 1; ss[m_, k_] := 2^k m! (-1)^(m-k) c[m-k, k]; Table[ss[m, colnum], {m, colnum, maxrow}])

CROSSREFS

First column of triangular array (ss(m, 1) for m>=1) is A038049.

Sequence in context: A226659 A009327 A027168 * A290859 A290659 A286866

Adjacent sequences: A078748 A078749 A078750 * A078752 A078753 A078754

KEYWORD

nonn,tabl,easy

AUTHOR

Carmen Chicone (carmen(AT)chicone.math.missouri.edu), Dec 22 2002

EXTENSIONS

Edited by Dean Hickerson, Dec 30 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 06:07 EDT 2023. Contains 361577 sequences. (Running on oeis4.)