login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078435
Number of composites <= n^2.
4
1, 2, 5, 10, 16, 25, 34, 46, 59, 75, 91, 110, 130, 152, 177, 202, 228, 258, 289, 322, 356, 392, 430, 471, 511, 554, 600, 647, 695, 746, 799, 852, 908, 965, 1025, 1086, 1150, 1216, 1281, 1349, 1418, 1490, 1566, 1641, 1719, 1797, 1880, 1962, 2044, 2133, 2223
OFFSET
1,2
FORMULA
a(n) = n^2 - A038107(n). - R. J. Mathar, Jun 22 2009
EXAMPLE
a(3)=5 because the only composites <= 9 are 1, 4, 6, 8 and 9.
MAPLE
NumComposites := proc(N::posint) local count, i:count := 0:for i from 1 to N do if not isprime(i) then count := count + 1 fi:od: count; end:seq(NumComposites(k^2), k=1..51); # Zerinvary Lajos, May 26 2008
A038107 := proc(n) numtheory[pi]( n^2) ; end: A078435 := proc(n) n^2-A038107(n) ; end: seq(A078435(n), n=1..100) ; # R. J. Mathar, Jun 22 2009
MATHEMATICA
a[n_] := n^2 - PrimePi[n^2];
Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 20 2024, after R. J. Mathar *)
CROSSREFS
Sequence in context: A084587 A001859 A011903 * A049815 A047992 A079984
KEYWORD
nonn
AUTHOR
John E. Lenz (jel5010(AT)yahoo.com), Dec 30 2002
STATUS
approved