login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078069
Expansion of (1-x)/(1+2*x+2*x^2).
7
1, -3, 4, -2, -4, 12, -16, 8, 16, -48, 64, -32, -64, 192, -256, 128, 256, -768, 1024, -512, -1024, 3072, -4096, 2048, 4096, -12288, 16384, -8192, -16384, 49152, -65536, 32768, 65536, -196608, 262144, -131072, -262144, 786432, -1048576, 524288, 1048576, -3145728, 4194304, -2097152, -4194304
OFFSET
0,2
COMMENTS
Pisano period lengths: 1, 1, 8, 1, 4, 8, 24, 1, 24, 4, 40, 8, 12, 24, 8, 1, 16, 24, 72, 4,... - R. J. Mathar, Aug 10 2012
FORMULA
a(n) = (-2)*(a(n-1)+a(n-2)), n>1 ; a(0)=1, a(1)=-3. - Philippe Deléham, Nov 19 2008
a(n) = A108520(n)-A108520(n-1). - R. J. Mathar, Aug 11 2012
G.f.: G(0)*(1 - x)/(2*(1 + x)), where G(k)= 1 + 1/(1 - x*(k+1)/(x*(k+2) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 20 2013
a(n) = (1/2 - I)*(-1 - I)^n + (1/2 + I)*(-1 + I)^n, n>=0. Taras Goy, Apr 20 2019
MATHEMATICA
CoefficientList[Series[(1-x)/(1+2x+2x^2), {x, 0, 50}], x] (* or *) LinearRecurrence[{-2, -2}, {1, -3}, 50] (* Harvey P. Dale, Jan 19 2012 *)
PROG
(PARI) Vec((1-x)/(1+2*x+2*x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 25 2012
CROSSREFS
Cf. A090131.
Sequence in context: A161173 A210875 A238373 * A090131 A152833 A139525
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Nov 17 2002
STATUS
approved