login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Combined Diophantine Chebyshev sequences A054491 and A077234.
3

%I #12 Feb 12 2017 02:12:20

%S 1,2,6,9,23,34,86,127,321,474,1198,1769,4471,6602,16686,24639,62273,

%T 91954,232406,343177,867351,1280754,3236998,4779839,12080641,17838602,

%U 45085566,66574569,168261623

%N Combined Diophantine Chebyshev sequences A054491 and A077234.

%C -3*a(n)^2 + b(n)^2 = 13, with the companion sequence b(n)= A077238(n).

%H Matthew House, <a href="/A077237/b077237.txt">Table of n, a(n) for n = 0..3478</a>

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,4,0,-1).

%F a(2*k)= A054491(k) and a(2*k+1)= A077234(k), k>=0.

%F G.f.: (1+x)*(1+x+x^2)/(1-4*x^2+x^4).

%F a(n) = 4*a(n-2) - a(n-4). - _Matthew House_, Feb 11 2017

%e 3*a(2)^2 + 13 = 3*36+13 = 121 = 11^2 = A077238(2)^2.

%t CoefficientList[Series[(1 + x) (1 + x + x^2)/(1 - 4 x^2 + x^4), {x, 0, 28}], x] (* _Michael De Vlieger_, Feb 11 2017 *)

%K nonn,easy

%O 0,2

%A _Wolfdieter Lang_, Nov 08 2002