login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1)=7; a(n),a(n+1) are smallest > a(n-1) such that a(n-1)^2+a(n)^2=a(n+1)^2.
0

%I #12 Jul 29 2023 06:41:08

%S 7,24,25,60,65,72,97,4704,4705,11292,12233,79044,79985,124212,147737,

%T 430416,455065,504072,679097,24502296,24511705,34278300,42140545,

%U 68012700,80009705,192023292,208025233,356427144,412692145,990461148,1072999577,2403086064,2631758105

%N a(1)=7; a(n),a(n+1) are smallest > a(n-1) such that a(n-1)^2+a(n)^2=a(n+1)^2.

%C Note that each time two more terms are added simultaneously.

%e a(1)=7 therefore a(2)=24 and a(3)=25: 7^2+24^2=25^2; a(3)=25 therefore a(4)=60 and a(5)=65: 25^2+60^2=65^2.

%o (Python)

%o from math import isqrt

%o from sympy.ntheory.primetest import is_square

%o def aupton(terms):

%o alst = [7]

%o for n in range(2, terms+1, 2):

%o sq1, an = alst[-1]**2, alst[-1] + 1

%o while not is_square(sq1 + an**2): an += 1

%o alst.extend([an, isqrt(sq1 + an**2)])

%o return alst[:terms]

%o print(aupton(19)) # _Michael S. Branicky_, Jul 24 2021

%Y Cf. A077034, A076604.

%K nonn

%O 1,1

%A _Zak Seidov_, Oct 21 2002

%E a(16) and beyond from _Michael S. Branicky_, Jul 24 2021