login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077035
a(1)=7; a(n),a(n+1) are smallest > a(n-1) such that a(n-1)^2+a(n)^2=a(n+1)^2.
0
7, 24, 25, 60, 65, 72, 97, 4704, 4705, 11292, 12233, 79044, 79985, 124212, 147737, 430416, 455065, 504072, 679097, 24502296, 24511705, 34278300, 42140545, 68012700, 80009705, 192023292, 208025233, 356427144, 412692145, 990461148, 1072999577, 2403086064, 2631758105
OFFSET
1,1
COMMENTS
Note that each time two more terms are added simultaneously.
EXAMPLE
a(1)=7 therefore a(2)=24 and a(3)=25: 7^2+24^2=25^2; a(3)=25 therefore a(4)=60 and a(5)=65: 25^2+60^2=65^2.
PROG
(Python)
from math import isqrt
from sympy.ntheory.primetest import is_square
def aupton(terms):
alst = [7]
for n in range(2, terms+1, 2):
sq1, an = alst[-1]**2, alst[-1] + 1
while not is_square(sq1 + an**2): an += 1
alst.extend([an, isqrt(sq1 + an**2)])
return alst[:terms]
print(aupton(19)) # Michael S. Branicky, Jul 24 2021
CROSSREFS
Sequence in context: A286406 A070410 A377011 * A076602 A287132 A287193
KEYWORD
nonn
AUTHOR
Zak Seidov, Oct 21 2002
EXTENSIONS
a(16) and beyond from Michael S. Branicky, Jul 24 2021
STATUS
approved