OFFSET
1,3
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
FORMULA
a(n) is asymptotic to (2/3)*n.
a(n) = A050292(n-1) + (1+(1-2*(C(n)-F(n)))*(-1)^F(n))/2 where C(n) = ceiling(log_2(n)); F(n) = floor(log_2(n)) and A050292(n) (with A050292(0)=0) is the maximum cardinality of a double-free subset of {1, 2, ..., n}. So using Wang's asymptotic formula for A050292, a(n) = (2/3)*n + O(log_4(n)). Series expansion: (1/(x-1)) * ( 1/(x-1) + Sum_{i>=1} (-1)^i*( x^(2^i)/(x^(2^i)-1) - x^(2^(i-1)) ). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 17 2003
a(n+1) = b(n) with b(0)=0, b(2n) = -b(n) + 2n+1, b(2n+1) = -b(n) + 2n + 2 -[n==0]. Also a(n+1) = A050292(n) + A030301(n). - Ralf Stephan, Oct 28 2003
MATHEMATICA
a[1] = 1; a[n_] := a[n] = n - a[Ceiling[n/2]]; Array[a, 100] (* Amiram Eldar, Sep 10 2020 *)
PROG
(PARI) a(n)=if(n<2, 1, n-a(ceil(n/2)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Nov 26 2002
EXTENSIONS
Edited by Ralf Stephan, Sep 01 2004
STATUS
approved