

A076895


a(1) = 1, a(n) = n  a(ceiling(n/2)).


3



1, 1, 2, 3, 3, 4, 4, 5, 6, 7, 7, 8, 9, 10, 10, 11, 11, 12, 12, 13, 14, 15, 15, 16, 16, 17, 17, 18, 19, 20, 20, 21, 22, 23, 23, 24, 25, 26, 26, 27, 27, 28, 28, 29, 30, 31, 31, 32, 33, 34, 34, 35, 36, 37, 37, 38, 38, 39, 39, 40, 41, 42, 42, 43, 43, 44, 44, 45, 46, 47, 47, 48, 48
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000


FORMULA

a(n) is asymptotic to (2/3)*n.
a(n) = A050292(n1) + (1+(12*(C(n)F(n)))*(1)^F(n))/2 where C(n) = ceiling(log_2(n)); F(n) = floor(log_2(n)) and A050292(n) (with A050292(0)=0) is the maximum cardinality of a doublefree subset of {1, 2, ..., n}. So using Wang's asymptotic formula for A050292, a(n) = (2/3)*n + O(log_4(n)). Series expansion: (1/(x1)) * ( 1/(x1) + Sum_{i>=1} (1)^i*( x^(2^i)/(x^(2^i)1)  x^(2^(i1)) ).  Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Feb 17 2003
a(n+1) = b(n) with b(0)=0, b(2n) = b(n) + 2n+1, b(2n+1) = b(n) + 2n + 2 [n==0]. Also a(n+1) = A050292(n) + A030301(n).  Ralf Stephan, Oct 28 2003


MATHEMATICA

a[1] = 1; a[n_] := a[n] = n  a[Ceiling[n/2]]; Array[a, 100] (* Amiram Eldar, Sep 10 2020 *)


PROG

(PARI) a(n)=if(n<2, 1, na(ceil(n/2)))


CROSSREFS

Cf. A050292, A079411.
Sequence in context: A273663 A135671 A079420 * A282029 A029086 A070046
Adjacent sequences: A076892 A076893 A076894 * A076896 A076897 A076898


KEYWORD

nonn


AUTHOR

Benoit Cloitre, Nov 26 2002


EXTENSIONS

Edited by Ralf Stephan, Sep 01 2004


STATUS

approved



