OFFSET
1,2
COMMENTS
It appears that 1,2,3,8 are the only positive integers that cannot be partitioned as the sum of a semiprime and a triangular number. Here triangular numbers include t(0)=0 and t(1)=1. - Jonathan Vos Post and Ray Chandler, Nov 28 2004
This sequence contains 216 (and possibly other nontriangular numbers) together with an infinite number of triangular numbers. The indices of the triangular numbers are in A138666. This is related to the Sun's conjecture (see A132399) that every number except 216 is the sum of a triangular number and a prime or 0. - T. D. Noe, Mar 26 2008
LINKS
T. D. Noe, Table of n, a(n) for n=1..1001
EXAMPLE
a(2) = 36 is an element of this sequence because 36 cannot be written as a sum of one of the primes <= 36 {2,3,5,7,11,13,17,19,23,29,31} and one of the triangular numbers <= 36 {1,3,6,10,15,21,28,36}. - corrected (added 28) by Gionata Neri, May 02 2015
MATHEMATICA
Complement[Range[9871], Total/@Tuples[{Prime[Range[1220]], Accumulate[ Range[ 0, 140]]}]] (* Harvey P. Dale, Jul 30 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jason Earls, Nov 14 2002
EXTENSIONS
Added the terms 6786 through 9870 and conjecture that there are no further terms - Jonathan Vos Post and Ray Chandler, Nov 28 2004
Added "positive" to the name - Alex Ratushnyak, Apr 04 2013
STATUS
approved