login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076648
Numbers k such that phi(k-1) + phi(k+1) = sigma(k)/2.
0
315, 351, 819, 3375, 24921, 47520, 99540, 107541, 125631, 189175, 410805, 763665, 877365, 1680855, 2480555, 6911079, 7849479, 9646395, 11245365, 12528165, 14242800, 14684055, 16921191, 17194365, 19395025, 27782160, 33830685, 34823075, 36278649, 43955955
OFFSET
1,1
EXAMPLE
phi(314) + phi(316) = 156 + 156 = 312 = sigma(315)/2, so 315 is a term.
MATHEMATICA
Select[Range[2, 10^5], EulerPhi[ # - 1] + EulerPhi[ # + 1] == (1/2)DivisorSigma[1, # ] &]
PROG
(PARI) is(k) = if(k < 2, 0, eulerphi(k-1) + eulerphi(k+1) == sigma(k)/2); \\ Amiram Eldar, Nov 10 2024
CROSSREFS
Sequence in context: A361034 A210889 A210891 * A323380 A256575 A295990
KEYWORD
nonn
AUTHOR
Joseph L. Pe, Oct 23 2002
EXTENSIONS
a(8)-a(30) from Donovan Johnson, Mar 01 2012
STATUS
approved