OFFSET
1,1
COMMENTS
If n is squarefree (cf. A005117), then the least x>1 such that x^d == 1 (mod d) (for each divisor d of n) equals n+1.
FORMULA
a(p^m) = p+1 for p prime and m>1.
a(n) = A076333(n) + 1. - Amiram Eldar, Feb 11 2021
MATHEMATICA
f[n_] := If[(r = Times @@ FactorInteger[n][[;; , 1]]) < n, r, 0]; Select[f /@ Range[200], # > 0 &] + 1 (* Amiram Eldar, Feb 11 2021 *)
PROG
(PARI) lista(nn) = {for(n=1, nn, if (!issquarefree(n), print1(A076618(n), ", "); ); ); } \\ Michel Marcus, Jul 13 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Oct 22 2002
STATUS
approved