login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076546
Let P = { p_1 = 3, p_2 = 5, ...} be the set of odd primes. If p_n in P can be written as p_n = q+r+s with q, r, s in P, let a(n) = largest such q, otherwise let a(n) = p_{n+1}.
0
5, 7, 11, 5, 7, 11, 13, 17, 23, 23, 31, 31, 37, 41, 47, 53, 53, 61, 61, 67, 73, 73, 83, 89, 89, 97, 101, 103, 107, 113, 113, 131, 131, 139, 139, 151, 157, 157, 167, 173, 173, 181, 181, 191, 193, 199, 211, 211, 223, 227, 233, 233, 241, 251, 257, 263, 263, 271, 271, 277
OFFSET
1,1
COMMENTS
11 belongs to a cycle of length 3 when a(n) is iterated. The paper by Janos studies the set of cycles.
REFERENCES
Ludvik Janos, On Vinagradov's 3-primes theorem, Abstracts Amer. Math. Soc., 25 (No. 2, 2002), p. 398, #01T-11-57.
EXAMPLE
3 has no such representation, so a(1) = 5. The 10th odd prime, 31, equals 23+5+3, with q=23 and no larger q exists, so a(1) = 23.
PROG
(PARI) {forprime(p=3, 300, b=0; q=precprime(p-1); while(b<1&&q>2, r=q; while(b<1&&r>2, s=r; while(b<1&&s>2, if(q+r+s==p, b=1; print1(q, ", "), s=precprime(s-1))); r=precprime(r-1)); q=precprime(q-1)); if(b<1, print1(nextprime(p+1), ", ")))}
CROSSREFS
Sequence in context: A061523 A119653 A023592 * A167372 A023590 A096919
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Apr 25 2003
EXTENSIONS
Are there other cycles? - N. J. A. Sloane.
More terms and PARI code from Klaus Brockhaus, Apr 26 2003
STATUS
approved