|
|
A076516
|
|
Primes p such that (p-1) and the period length of 1/p are both squares.
|
|
1
|
|
|
5, 17, 101, 257, 577, 1297, 3137, 5477, 7057, 12101, 13457, 14401, 15377, 24337, 25601, 30977, 33857, 41617, 42437, 44101, 50177, 52901, 55697, 57601, 62501, 65537, 69697, 72901, 80657, 98597, 106277, 122501, 147457, 164837, 184901
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
EXAMPLE
|
(17-1) = 16 is square and 1/17=0.0588235294117647(0588...) with a decimal period length = 16, square, hence 17 is in the sequence
|
|
MATHEMATICA
|
bsQ[n_]:=IntegerQ[Sqrt[n-1]]&&IntegerQ[Sqrt[Length[Flatten[ RealDigits[ 1/n][[1]]]]]]; Select[Prime[Range[2, 17000]], bsQ] (* Harvey P. Dale, May 30 2013 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|