

A076428


Numbers k such that the sum of digits of k in superfactorial base divides k.


1



1, 2, 4, 6, 8, 10, 12, 14, 15, 20, 24, 28, 30, 36, 40, 42, 48, 50, 56, 60, 63, 70, 72, 80, 84, 90, 96, 100, 108, 110, 120, 121, 132, 144, 150, 153, 156, 168, 180, 192, 200, 204, 216, 220, 228, 231, 240, 250, 252, 264, 276, 288, 290, 291, 295, 300, 304, 305, 312, 315
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

We define the superfactorial base as a variant of the factorial base where place values are superfactorials (A000178) instead of factorials (A000142).  Rémy Sigrist, Mar 20 2018


LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000


EXAMPLE

28 written in superfactorial base is 220, the sum of digits is thus 4 and 4 divides 28, so 28 is included in the sequence.


MAPLE

A076428 := proc(n) local i, j, m, t, t1; t := NULL; for j from 1 to n do m := j; i := 2; t1 := 0; while m>0 do t1 := t1 + (m mod i!); m := floor(m/i!); i := i+1; od; if j mod t1 = 0 then t := t, j fi; od; t; end;


MATHEMATICA

max = 4; bases = Range[max, 1, 1]!; nmax = Times @@ bases  1; sumdig[n_] := Plus @@ IntegerDigits[n, MixedRadix[bases]]; Select[Range[nmax], Divisible[#, sumdig[#]] &] (* Amiram Eldar, Sep 07 2020 *)


CROSSREFS

Cf. A000142, A000178, A118363.
Sequence in context: A184592 A247427 A316837 * A319747 A055958 A241142
Adjacent sequences: A076425 A076426 A076427 * A076429 A076430 A076431


KEYWORD

nonn,base


AUTHOR

Floor van Lamoen, Oct 10 2002


EXTENSIONS

Definition corrected by Rémy Sigrist, Mar 20 2018


STATUS

approved



