login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A076334
Differences between successive squarefree kernels.
1
1, 1, -1, 3, 1, 1, -5, 1, 7, 1, -5, 7, 1, 1, -13, 15, -11, 13, -9, 11, 1, 1, -17, -1, 21, -23, 11, 15, 1, 1, -29, 31, 1, 1, -29, 31, 1, 1, -29, 31, 1, 1, -21, -7, 31, 1, -41, 1, 3, 41, -25, 27, -47, 49, -41, 43, 1, 1, -29, 31, 1, -41, -19, 63, 1, 1, -33, 35, 1, 1, -65, 67, 1, -59, 23, 39
OFFSET
1,4
LINKS
FORMULA
a(n) = A007947(n+1) - A007947(n).
G.f.: -1 + (1 - x)*Sum_{k>=1} phi(k)*mu(k)^2*x^(k-1)/(1 - x^k). - Ilya Gutkovskiy, Apr 15 2017
MATHEMATICA
Drop[CoefficientList[Series[-1 + (1 - x)*Sum[EulerPhi[k] MoebiusMu[k]^2*x^(k - 1)/(1 - x^k), {k, 100}], {x, 0, 100}], x], 1] (* Indranil Ghosh, Apr 16 2017 *)
PROG
(PARI) x='x+O('x^100); Vec(-1 + (1 - x)*sum(k=1, 100, eulerphi(k)*moebius(k)^2*x^(k - 1)/(1 - x^k))) \\ Indranil Ghosh, Apr 16 2017
CROSSREFS
Cf. A007947.
Sequence in context: A201669 A069002 A245369 * A348641 A014475 A358612
KEYWORD
sign
AUTHOR
Reinhard Zumkeller, Nov 06 2002
STATUS
approved