login
A076302
Triangle T(n,k) = number of k-smooth divisors of n, read by rows.
0
1, 1, 2, 1, 1, 2, 1, 3, 3, 3, 1, 1, 1, 1, 2, 1, 2, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 2, 1, 4, 4, 4, 4, 4, 4, 4, 1, 1, 3, 3, 3, 3, 3, 3, 3, 1, 2, 2, 2, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Divisor Function.
Eric Weisstein's World of Mathematics, Smooth Number.
FORMULA
T(n,n) = A000005(n);
T(n,2) = A001511(n) for n>1.
T(n,3) = A072078(n) for n>2.
EXAMPLE
Triangle begins:
1
1 2
1 1 2
1 3 3 3
1 1 1 1 2
1 2 4 4 4 4
1 1 1 1 1 1 2
1 4 4 4 4 4 4 4
1 1 3 3 3 3 3 3 3
MATHEMATICA
T[n_, k_] := Times@@(IntegerExponent[n, #]+1& /@ Select[Range[2, k], PrimeQ]);
Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 15 2021 *)
CROSSREFS
KEYWORD
nonn,tabl,changed
AUTHOR
Reinhard Zumkeller, Mar 14 2003
STATUS
approved